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Abstract

A general hybrid time- and frequency-domain methodology has been developed to identify acoustic resonance

conditions of internal flow configurations. The acoustic modes are determined by imposing onto the flow a time-dependent

excitation at several locations on the boundary. The resulting time-domain pressure responses, which are computed via an

unsteady Favre–Reynolds averaged Navier–Stokes solver, are used to determine the frequency response function matrix of

the fluid which can be considered to be a multiple-input multiple-output system. The main test case was selected to be a

closed-end cylindrical duct for which the effect of different excitation techniques on the predicted acoustic modes is

discussed in detail. The last test case deals with the acoustic characterization of a 2-D channel with symmetric bumps and

an inlet flow velocity of 17m s�1. It is shown that the methodology was suitable for identifying axial and transverse

acoustic modes up to 3 kHz.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In many aerospace applications, aeroacoustic resonances of internal flow configurations are considered to
be extremely undesirable phenomena which must be avoided during the design process. The excitation of the
acoustic modes in core volumes, such as the combustion chamber of liquid-propellant [1,2] or solid-propellant
[3–5] rocket motors, can lead to uncontrolled self-sustained instabilities. Similarly, under critical conditions,
rotors of high-pressure turbo-compressors can exhibit high vibration levels due to wake-excited acoustic
resonances [6]. Acoustic/flow coupling can also play a crucial role on performance degradations and extra tone
noise levels of configurations such as shock wave/boundary layer interactions [7], convergent-divergent
nozzles at off-design conditions [8] and open-cavities flow resonance [9].

Analytical methods are limited to simple cases and the use of numerical methods for acoustic resonance
predictions of complex geometries with flow-acoustic coupling is not straightforward. Such difficulties were
addressed by Eriksson et al. [10] for the prediction of the afterburner rumble and screech. Their approach is
based on an Arnoldi procedure to extract the acoustic eigenmodes from the linearized Euler equations solved
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a sound velocity
c viscous damping
E½:� expectation operator
f ex excitation frequency
f n undamped natural frequency
Gxx one-sided auto-spectrum density function

ð2 CNi�Ni Þ

Gxy one-sided cross-spectrum density func-
tion ð2 CNi�No Þ

Hxy frequency-response function ð2 CNi�No Þ

k stiffness
L length
m mass
n mode number
nmax number of time steps
Ni number of inputs
Nk number of samples
No number of outputs
R radius
Sxy cross-spectrum density function ð2 CNi�No Þ

t time

tmax total simulation time
xðtÞ input signal
yðtÞ output signal
X ðf Þ forward Fourier transform of the input
Y ðf Þ forward Fourier transform of the output
Df frequency resolution
fðf Þ phase factor of Hxyðf Þ

qS surface of the vibrating wall

Subscripts

i input
i; j; k vector component along the correspond-

ing direction
k sample number
n mode number
o output

Superscripts

nA nth axial mode number
T transpose
� complex conjugate
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in the time-domain. An alternative experimental approach to establish possible links between
observed instabilities and acoustic resonances is based on white-noise excitation of the component under
study and the filtering of acoustic resonance frequencies by using loudspeakers [11,12,14–16]. In many
cases, such simple acoustic characterization may well provide crucial information about flow-induced
resonant sound generation during operating conditions [17,18]. Due to significant improvements in
computational fluid dynamics methods, turbulence modeling and computing hardware, unsteady Reynolds-
averaged Navier–Stokes (RANS) equations can, in principle, be used for time-domain investigations of
acoustic resonance phenomena [19–21]. However, neither the application of a suitable excitation to identify
the acoustic resonances without altering the nature of the flow, nor the interpretation of the results is
straightforward.

This paper aims at developing a general time-domain RANS-based methodology to identify acoustic
resonances of core volumes commonly encountered in aeronautical applications. The novelty of the approach,
which can be integrated in the design process of engineering geometries, is the representation of the flow
domain by means of generalized transfer functions from which the acoustic resonances are deduced. Such
transfer functions are computed from the response of the flow to small perturbations that are imposed onto
the flow at several locations at the boundaries using a standard CFD code. The formulation is totally general
and can be used with any geometry subjected to any flow. The difficulties associated with imposing an
optimum perturbation not to disturb the main flow while obtaining an adequate response and the selection of
other numerical parameters are discussed in detail.
2. Basic methodology

The dynamic behavior of a multiple-input multiple-output (MIMO) linear system can be described through
the following frequency-domain relationship

Hxyðf Þ ¼ G�1xx ðf ÞGxyðf Þ, (1)
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where Hxy 2 CNi�No is the complex-valued matrix of frequency-response functions (FRF matrix) between the
Ni inputs and the No outputs of the system, Gxx 2 RNi�Ni is the real-valued squared matrix of the Ni �Ni

one-sided auto-spectral density of the inputs, and Gxy 2 CNi�No is the complex-valued rectangular matrix of
the Ni �No cross-spectral density between the Ni inputs and the No outputs. The auto- and cross-spectral
density matrices are determined by

Gxxðf Þ ¼ 2 lim
T!1

1

T
E½X�ðf ÞXTðf Þ�, (2)

Gxyðf Þ ¼ 2 lim
T!1

1

T
E½X�ðf ÞYTðf Þ�, (3)

where E denotes the expectation operator and X ¼ ½X 1;X 2; . . . ;X Ni
�T and Y ¼ ½Y 1;Y 2; . . . ;Y No

�T are two
vectors representing the Fourier transform of the Ni inputs and the No outputs, respectively. The inverse of
the auto-correlation matrix G�1xx is computed using singular value decomposition. From a practical point of
view, the record time is finite since the numerical simulation with the RANS code is for a finite duration.
Consequently, Eq. (1) gives only an approximation to the FRF matrix.

In the present work, the inputs correspond to time-dependent excitations which are applied at several
boundary locations to the flow. The response is computed at several locations inside the core volume solving
the Favre–Reynolds-averaged Navier–Stokes equations. Such time-domain information allows the construc-
tion of a frequency response function of the core volume from which both the acoustic resonances and
associated mode shapes are determined. Because the resonance frequency range investigated in this study is
below 3 kHz, it is assumed that the time-scales of interest are correctly resolved with the RANS approach.

3. Test-case 1: 1-dof mechanical system

The previous methodology is validated by comparison with the exact transfer function of a single-input
single-output configuration. A viscously damped 1-dof mechanical system is excited by a stationary random
forcing function and the corresponding time-domain equation of motion are

m €yðtÞ þ c _yðtÞ þ kyðtÞ ¼ xðtÞ, (4)

where m ¼ 17:5 kg is the mass of the system, c ¼ 350N sm�1 denotes the viscous damping coefficient, k ¼

1:7� 104 kNm�1 is the stiffness coefficient, xðtÞ and yðtÞ are, respectively, the input random force and the
resulting output displacement. A 4-step Runge–Kutta finite difference scheme is used to compute the time-
domain response of the system used to identify the frequency-response function. The random behavior of the
input force xðtÞ is prescribed within a range of �4:5N and a different value of the input signal is imposed at
each time step Dt ¼ 10�4 s. Results are compared with the exact solution of the frequency-response function
[22, pp. 33–40].

jHxyðf Þj ¼ fk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ðf =f nÞ

2
�2 þ ½2xf =f n�

2

q
g�1, (5)

where x ¼ c=ð2
ffiffiffiffiffiffiffi
km
p
Þ denotes the damping factor and f n ¼ 1=ð2pÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ðk=mÞ

p
represents the undamped natural

frequency.
A comparison of the gain factor between the analytical solution and two numerical results is given in Fig. 1.

The first numerical result is obtained using only one sample record ðNk ¼ 1Þ and the frequency-response
function is determined from the auto- and cross-spectrum one-sided density functions Gxx and Gxy (Eqs. (2)
and (3)). The Fourier transforms of the input and output signal are computed over a single record time of
length T ¼ 0:2047 s corresponding to nmax ¼ 2048 iterations. This procedure is sufficient to give a good
estimation of the resonance frequency as shown by the position of the peak in the gain factor distribution
(Fig. 1) where the exact solution and the computed resonance frequencies are f exact

r ¼ 158:34Hz and
f comp:

r ¼ 162:9Hz, respectively, for a frequency resolution of Df ¼ 4:88Hz. However, these predictions
become unacceptable for very high frequencies, introducing substantial spurious noise. A second
computational test was performed defining the total computational time Tmax ¼ NkT based on a multiple
of the previous record length T, and on the total number of the sample records Nk.
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Fig. 1. Comparison of exact and computed frequency response functions for the 1-dof mechanical system.
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In the case of the results presented in Fig. 1, the number of sample records is Nk ¼ 25 and the length of each
sample record remains unchanged (T ¼ 0:2047 s and nmax ¼ 2048). The main effect of averaging over several
sample signals when computing the frequency-response function results in a substantial smoothing of the
numerical solution. It can be observed that the computed value of the resonance frequency with Nk ¼ 25
ðf r ¼ 157:4HzÞ is closer to the exact solution of f exact

r ¼ 158:34Hz as compared with f r ¼ 162:9Hz for
Nk ¼ 1. Furthermore, the shape of the gain factor distribution is corrected when the frequency increases,
giving a mean slope after the peak which can be superimposed to the slope of the exact solution. Similar
improvements were obtained on the phase factor prediction where the phase shift near the resonance
frequency was in satisfactory agreement with the exact solution.
4. Test-case 2: acoustic resonance in a closed-end tube

The purpose of the second test case is to validate the present methodology for the zero-flow acoustic
characterization of a closed-end tube. This configuration was used by Anthoine et al. [11] for comparison with
the measurements of acoustic resonance frequencies in a typical solid propellant booster [11–14]. This
axisymmetric test facility consists of a contoured nozzle with a throat diameter of 30 mm, a section diameter of
76mm and a booster length ðL ¼ 405mmÞ. In order to get a better understanding of the flow-acoustic
coupling mechanisms in such configuration, Anthoine et al. [11] began their experimental investigations by a
preliminary study where a loudspeaker is placed at the throat of the nozzle whereas the original porous wall at
the right end is replaced by a solid wall so that the duct has closed ends. The experimentally determined
frequencies of the first two axial acoustical modes were found to be relatively close to the analytically
determined resonance frequencies of a circular cylinder with close-ends. Consequently, here it will be assumed,
that the acoustic characterization of booster could be approximated by a cylinder of diameter 76mm without
any loss of generality [11,13]. An unstructured mesh was generated using 31 circumferential nodes, each duct
end surface was discretized with triangular elements and 56 nodes were used along the length of the cylinder
with quadrilateral elements (Fig. 2).

The main difficulty is the formulation of a suitable unsteady excitation mechanism similar to white-noise
that would be provided by a loudspeaker. After many attempts, it was found that best results were obtained
when the left end surface of the duct was modeled with an elastic membrane subject to random deformations
of the form:

xi;j;kðtÞ ¼ x0
i;j;k þ wi;j;kðtÞ cos½2pf exðtÞt� 8ði; j; kÞ 2 qS, (6)

where qS denotes the surface of the vibrating wall, xi;j;k is the instantaneous position of the wall at node
ði; j; kÞ, x0

i;j;k determines the unperturbed position of the membrane, wi;j;k is the maximum vibration amplitude
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Fig. 2. Computational grid with 1736 nodes used for the circular cylinder configuration (L ¼ 405:5mm, R ¼ 38mm).
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at each instant, and f ex denotes the excitation frequency of the forced displacement of the membrane. These
conditions correspond to a non-uniform imposed displacement of the membrane xi;j;kðtÞ with a random
amplitude wi;j;k at each time step. The excitation frequencies f ex are prescribed using a time-dependent
formulation corresponding to a linear variation over a user-defined bandwidth of interest

f exðtÞ ¼ f low þ ðf high � f lowÞ
t

tmax
, (7)

where f low and f high are the lower and the upper values of the excitation window and tmax ¼ nmaxDt is the total
simulation time. The duct was excited at a single axial position ðx=L ¼ 0Þ, while the response was computed at
13 equally spaced points along the duct in order to be able to identify the mode shapes. The variation of the
applied excitation frequency against time was defined as ½f low; f high� ¼ ½100Hz; 1 kHz�. The maximum
amplitude of the membrane displacement was chosen such that the corresponding pressure perturbation was
0.5% of the unperturbed pressure. The corresponding frequency increment is ðDf Þex ¼ ðnmaxDtÞ�1 ¼ 8:13Hz,
the total number of time instants being nmax ¼ 8196 and the time step Dt ¼ 1:5� 10�5 s. A 3-D unstructured
Favre–Reynolds averaged Navier–Stokes solver, based on a OðDx2Þ node centered finite-volume scheme with a
OðDt2Þ implicit dual time stepping technique [23] was used to implement the deterministic excitation boundary
condition. The size of the time step was chosen to have 66 points per period in order to ensure the correct time
discretization of the signal at the highest excitation frequency f high ¼ 1 kHz.

The time history of the axial velocity at x ¼ 0 (Fig. 3) exhibits the expected random behavior of the
excitation signal whereas the flow response at x ¼ L=2 (Fig. 4) clearly shows two vibration modes at two
distinct instants (t1 ffi 5:5� 10�2 s, t2 ffi 1:05� 10�2 s), corresponding approximately to 450 and 800Hz. Both
the pressure and velocity signals were stored at each time step and the spectra at each output point were
computed by averaging the Fourier transforms of each output no 2 ½1;No�

X̄ uðf Þ ¼
1

No

XNo

no¼1

Z T

0

uno
ðtÞe�i2pft dt

� �
, (8)

where uno
is the instantaneous velocity at output no and X̄ u the averaged velocity spectrum over the No

outputs. A typical velocity spectrum is presented in Fig. 5. The two distinct peaks lead to the identification of
the acoustic resonant conditions.

The present methodology was applied to 3 different duct lengths (L ¼ 231, 292.5, 405:5mm) and compared
with analytically derived resonance frequencies values f exact

n ¼ nða=2LÞ for a closed circular cylinder, where a is
the speed of sound and n denotes the mode number. The discrepancies between the computed and the
analytical results are below the frequency resolution ðDf ¼ 8:13HzÞ for both first two axial modes except for
the shorter booster length L ¼ 231mm (f comp:

¼ 710Hz and f exact
¼ 742Hz). The axial mode shapes were
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Fig. 3. Time-history of the axial velocity excitation imposed at the inflow ðx=L ¼ 0Þ.
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Fig. 4. Time-history of the axial velocity response taken at the middle axis of the duct ðx=L ¼ 0:5Þ.
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determined by considering the peak value of each output spectrum at the two acoustic frequencies. As it can be
seen from Fig. 6, the computed non-dimensional pressure mode shape is in good agreement with the exact
solution FnðxÞ ¼ cosðnpx=LÞ. The wavelength of the first acoustic mode is twice the length of the cylinder and
the wavelength of the second acoustic mode is equal to the length of the cylinder. Furthermore, as predicted by
theory, an inspection of Figs. 6 and 7 reveals that there is a phase shift of a quarter wavelength between the
pressure and velocity mode shapes.

4.1. Influence of the frequency excitation range

In addition to the previous results, the velocity spectrum X̄ u was computed for three different excitation
cases: (a) ½502999Hz�; (b) ½1002600Hz�; and (c) ½3002900Hz�. All computations were performed with Dt ¼

1:5� 10�5 s and nmax ¼ 8192. The results are presented in Fig. 8 and the effect of the excitation range on the
predicted frequencies is self evident. Case (b) captures the first axial mode only ðf 1A

¼ 420HzÞ since the second
mode is outside the range. Case (c), the excitation window of which has been extended compared to case (b)
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(Fig. 8), is seen to capture both modes (f 1A
¼ 420Hz and f 2A

¼ 840Hz). Case (a), which uses a broad
bandwidth, also captures both modes but the peak amplitudes are seen to be different. When the excitation
range is below 200Hz, there is no flow response for case (c) because the excitation window is located apart
from significant frequencies (Fig. 8). Otherwise, there is a flow response for cases (a) and (b) for f exo200Hz
(Fig. 8). This relatively small but not negligible amplification between cases (a), (b) and case (c) represents
approximately 8% of the first mode peak amplitude and may be assimilated to the level of the residual noise
introduced by the solver.

4.2. Effect of the time step

Two numerical simulations, corresponding to time steps of Dt ¼ 1:5� 10�5 s and Dt ¼ 8� 10�6 s, were
conducted on a cylinder with a length of L ¼ 231mm. The time record lengths were nmax ¼ 8192 and 16384,
respectively. The corresponding computed pressure spectrum amplitudes are plotted in Fig. 9. Both
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computations were able to capture the resonant frequency of the first longitudinal mode, the value
of which agrees with the analytical solution ðf 1A

exact ¼ 742HzÞ. However, it is immediately seen that the
shorter time step, with 168 points per period, yields a much clearer spectrum than the longer time
step which only has 90 time steps per period. The second axial mode ðf 2A

exact ¼ 1485HzÞ was not captured by
the numerical simulations because the excitation frequency window was selected to capture the first mode
only.

4.3. Influence of the excitation mechanism

Finally, cylinder dimensions of L ¼ 1m and D ¼ 0:5m were selected in order to investigate the influence of
membrane behavior on the flow excitation. The discretization of the cylinder geometry resulted in 31 equally
spaced circumferential nodes and 49 axial nodes, the total number of grid points being 4998. A time step of
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Dt ¼ 1:5� 10�5 s and an excitation window of [10Hz; 999Hz] were used. The maximum amplitude of the
vibrating membrane corresponds to a 1% variation of the steady pressure inside the cylinder. Additional
numerical parameter are nmax ¼ 4096, T ¼ 6:1� 10�2 s and Df ¼ 8:13Hz. Two sets of calculations,
corresponding to elastic and rigid membranes respectively, were considered. The rigid membrane calculation
was performed by setting the axial displacement of the membrane, denoted by w in Eq. (6), to a constant value,
independent of grid position. The results are plotted in Fig. 10 which clearly shows that the use of an elastic
membrane is a much better way of exciting the flow. Although the rigid membrane is able to capture the first
two modes, it also introduces spurious oscillations which hinder the identification of the third and fourth
modes in Fig. 10. The first three mode shapes obtained from the elastic membrane calculation are plotted in
Fig. 11. The time step corresponds to 392 time points per period used to describe the fundamental acoustic
mode ðf 1A

¼ 1:7 kHzÞ. Although the mode shapes are captured with good accuracy, a small deformation
occurs near the membrane at x ¼ 0 because the grid points at that location are moving with the mesh to
provide the membrane flexibility.
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5. Test-case 3: acoustic characterization of the Délery B nozzle

Here, the aim is to demonstrate the capability of the method to deal with practical flows. 2-D RANS
computations were performed on the Délery B symmetric bump channel with an adjustable second throat [24].
This nozzle has a length of L ¼ 629mm and a height of H ¼ 100mm and the inlet flow velocity is
u0 ¼ 17m s�1. The minimum sections at the first and second throats are located at xT1

¼ 90mm and
xT2
¼ 550mm, respectively (Figs. 12 and 13). Steady flow solution, which is used to start the unsteady

simulation, was computed using a multi-block structured Favre–Reynolds-averaged Navier–Stokes solver
with OðDx3Þ upwind-biased van Leer-flux-vector-splitting scheme and Reynolds-stress model [25]. Time
accurate simulations are based on an implicit OðDt2Þ dual-time-stepping procedure with alternating-direction-
implicit sub-iterations [25]. Furthermore, it is assumed that no spectral interactions exist between the
deterministic driven unsteadiness and turbulence [27]. Consequently, statistical turbulence closures developed
for the Favre-averaged Navier–Stokes equations are used to compute the flow with unsteady boundary
conditions.

The computational mesh is based on 201� 101 grid points in the streamwise (x) and wall-normal (y)
directions, respectively (Fig. 12) and the minimum non-dimensional grid spacing at the wall is yþw ¼ 0:5. In this
study, the excitation was chosen generated by rigid and elastic vertical displacements of the upper wall
corresponding to the convergent-divergent parts of the 2nd throat ðx 2 ½550mm; 629 mm�Þ. The computa-
tional grid is displaced at each physical time step to follow the deformation of the second throat. The grid
velocities necessary for the definition of the numerical fluxes are computed by solving a Laplace equation [26].
An array of 14� 7 (x-wise�y-wise) ‘‘pressure sensors’’ was used to compute the FRF matrix (Fig. 13). The
time step was set to Dt ¼ 7� 10�6 s and the total computational time T ¼ 0:11 s corresponds to a frequency
resolution Df ¼ 8Hz.

A preliminary study was conducted on the unsteady flow response resulting from two different
deformations of the 2nd throat. Fig. 14 presents a comparison of the pressure amplitude spectra at probe
x ¼ 350mm and y ¼ 30mm resulting from random displacements of the 2nd throat and from sine sweep
oscillations. As expected, both approaches give the same acoustic resonance frequencies, but it appears that
the white noise excitation yields noisier pressure spectra than a sine sweep excitation (Fig. 14). Therefore,
further studies will be performed by imposing a sine oscillation to the 2nd throat (Fig. 15).

It can be seen from Fig. 16 that the pressure time history of the flow response, picked up at the reference
probe, exhibits a high response level at selected frequencies. This is confirmed by the amplitude and phase
plots of the pressure spectrum (Fig. 17). It must be noted that these spectra, which are computed without the
use of FRF windowing or sample averaging procedures, are completely free from spurious noise. As pointed
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Fig. 12. Computational grid for the Délery B nozzle ðNi �Nj ¼ 201� 101Þ and steady-state Mach number for an inlet flow velocity

u0 ¼ 17m s�1.
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Fig. 13. Positions of the ‘‘pressure sensors’’ (square symbol indicates the location of the reference sensor: x ¼ 350mm, y ¼ 30mm used to

analyze the pressure spectra).
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Fig. 14. Influence of the unsteady flow response due to random excitation and sine sweep excitation on the pressure spectrum amplitude

( sine sweep excitation; random excitation).
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Fig. 15. Vertical displacement of the 2nd throat due to sine-sweep excitations for the 100Hz–3 kHz range.
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out by the reviewers, this is probably due to the fact that the RANS solver acts as a low-pass filter. The
resonance conditions, which are characterized by peaks in the pressure spectrum amplitude, are clearly visible
up to 3 kHz (Fig. 17). As expected, the first resonance frequency ðf 1 ¼ 237HzÞ matches closely the
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Fig. 16. Time history of the pressure fluctuation extracted at point x ¼ 350mm and y ¼ 30mm.
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Fig. 17. Frequency response of the pressure signal at point x ¼ 350mm and y ¼ 30mm.
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analytically-computed axial acoustic modes assuming zero mean-flow ðf 1A
exact ¼ 239HzÞ. The Strouhal number,

based on the bump length w is Sr ¼ f 1Aw=u0 ¼ 2:8 for the first acoustic mode. It is interesting to note that the
pressure spectrum shows, in the 1700–2100Hz frequency range, two peaks whose frequencies (f 8 ¼ 1731 kHz
and f 9 ¼ 1845Hz) do not correspond to a multiple of the fundamental axial mode (f 8=f 1 ¼ 7:3 and
f 9=f 1 ¼ 7:78). Additional information is given by Fig. (18) which presents the acoustic mode shapes for the
first 10 resonance frequencies. It is clear that the present methodology is able to capture a pure transverse
mode, mode 8 in Fig. 18. The frequency of this mode is f 8 ¼ 1731Hz which is close to the first pure transverse
acoustic mode based on the nozzle height ðf 1T

exact ¼ 1700HzÞ. Furthermore, a coupled axial-transverse mode,
mode 9 in Fig. 18, is predicted at f 9 ¼ 1845Hz. Other mode shapes ðn ¼ 1; . . . ; 7; 10; 13; 14Þ can be assimilated
to pure longitudinal modes because their resonance frequencies are close to a multiple of the first axial mode.

6. Concluding remarks

� The purpose of this study was to assess if a time-domain CFD code could be used to predict acoustic
resonances. The methodology is based on a combination of the well-known MIMO vibration-testing
procedure and acoustic excitation using loudspeakers. The shakers are replaced by elastically deforming
vibrating membranes and the fluid/structure system is characterized by using a time-domain CFD code. The
simulated acoustic field is monitored at a sufficient number of points to define the mode shapes. It was found
both white noise and sine sweep excitations are able to predict the correct resonance frequencies and the
corresponding pressure mode shapes.
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Fig. 18. Acoustic modes of the Délery nozzle for an inlet flow velocity u0 ¼ 17ms�1 (Dt ¼ 6:94� 10�6 s, T ¼ 0:113 s, Df ¼ 8Hz,

Dh ¼ 0:1mm).
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� The results indicate that it is possible to perform the acoustic mode identification with good accuracy up
to about 3 kHz. In the case of the Délery nozzle, the sine sweep excitation mechanism allows the identification
of a large number of acoustic modes. It must be noted that this global aeroacoustic characterization
requires only one unsteady RANS computation over a total simulation time corresponding to 30 periods of
the fundamental acoustic mode. A second advantage of the method is that it takes, by virtue of using
a full CFD model, into account mean flow velocities, turbulence effects and temperature variations.
Therefore, it is applicable to complex geometries and flow conditions typical of aero-engine applications.
Nonetheless, further work is needed to study the potential effects of numerical dissipation on pressure
spectrum amplitudes.
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